Part Number Hot Search : 
T10B110B SI7812DN MCR100 5218A EFM101B LCX16 ZTX555 SI7812DN
Product Description
Full Text Search
 

To Download PKS603 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PKS603-607
PeakSwitchTM Family
Product Highlights
EcoSmart - Extremely Energy-Efficient * Standbyoutputpower0.6Wfor1Winput(highline) * Sleepmodepower2.4Wat3Winput(highline) * No-loadconsumption<200mWat265VACinput * SurpassesCaliforniaEnergyCommission(CEC), ENERGYSTAR,andEUrequirements PeakSwitch Features Reduce System Cost * Deliverspeakpowerofuptothreetimesmaximum continuousoutputpower * 277kHzoperationduringpeakpowersignificantly reducestransformersize * ProgrammablesmartAClinesensingprovideslatching shutdownduringshortcircuit,overloadandopenloop faults,andpreventsglitchesduringpowerdownor brownout * TwoexternalcomponentsresetlatchonACremoval * Adaptiveswitchingcycleon-timeextensionincreaseslow linepeakoutputpower,minimizingbulkcapacitorsize * Adaptivecurrentlimitreducesoutputoverloadpower * FrequencyjitteringreducesEMIfiltercost * TightI2ftolerancesandnegligibletemperaturevariation ofkeyparameterseasedesignandlowercost * Accuratehystereticthermalshutdownwithautomatic recoveryprovidescompletesystemleveloverload protectionandeliminatesneedformanualreset Better System Cost/Performance over RCC & Discrete * SimpleON/OFFcontrol-noloopcompensationneeded * Verylowcomponentcount-higherreliabilityandsingle sideprintedcircuitboard * Highbandwidthprovidesfastturnonwithnoovershoot andexcellenttransientloadresponse * Peakcurrentlimitoperationrejectslinefrequencyripple * Built-incurrentlimitandhystereticthermalprotection Applications * Inkjetprinter * Datastorage,audioamplifier,DCmotordrives
(R)
Enhanced, Energy-Efficient, Off-Line Switcher IC With Super Peak Power Performance
AC IN
+
DC OUT
Optional Smart AC Sense PeakSwitch
D
EN/UV BP
S
PI-3995-051006
Figure 1. Typical Peak Power Application.
PRODUCT3 PKS603 P PKS604 P PKS604 Y/F PKS605 P PKS605 Y/F PKS606 P PKS606 Y/F PKS607 Y/F
Table 1.
OUTPUT POWER TABLE 85-265 VAC 230 VAC 15% Adapter Adapter Adapter Adapter Cont.1 Peak2 Cont.1 Peak2 13 W 23 W 35 W 31 W 46 W 35 W 68 W 75 W 32 W 56 W 56 W 60 W 79 W 66 W 117 W 126 W 9W 16 W 23 W 21 W 30 W 25 W 45 W 50 W 25 W 44 W 44 W 44 W 58 W 46 W 86 W 93 W
Notes: 1. Typical continuous power in a non-ventilated enclosed adapter measured at +50 C ambient. 2. Typical peak power for a period of 100 ms and a duty cycle of 10% in a non-ventilated enclosed adapter measured at +50 C (see Key Applications section for details). 3. See Part Ordering Information.
Description
PeakSwitchisdesignedtoaddressapplicationswithhighpeakto-continuouspowerratiodemands.Theveryhighswitching frequencyduringpeakpowerloadsandexcellentloadtransient responsereducesystemcostaswellascomponentcountandsize. PeakSwitchincorporatesa700VpowerMOSFET,oscillator, highvoltageswitchedcurrentsourceforstartup,currentlimit,
andthermalshutdownontoamonolithicdevice.Inaddition, thesedevicesincorporateauto-restart,lineunder-voltagesense andfrequencyjittering.Aninnovativedesignminimizesaudio frequencycomponentsinthesimpleON/OFFcontrolscheme topracticallyeliminateaudiblenoisewithstandardvarnished transformerconstruction.
October 2006
PKS603-607
BYPASS (BP)
REGULATOR 5.8 V LINE UNDER-VOLTAGE
DRAIN (D)
240 A
25 A LATCH OFF/ AUTORESTART COUNTER ON TIME EXT RESET
FAULT PRESENT
+
BYPASS PIN UNDER-VOLTAGE
6.3 V
CURRENT LIMIT STATE MACHINE/ ADAPTIVE CURRENT LIMIT
-
5.8 V 4.8 V
VI
LIMIT
CURRENT LIMIT COMPARATOR
+
ENABLE
JITTER CLOCK 1.0 V + VT DCMAX OSCILLATOR ENABLE/ UNDERVOLTAGE (EN/UV) 1.0 V
S Q
THERMAL SHUTDOWN
R
Q
LEADING EDGE BLANKING
SOURCE (S)
GROUND (GND) (Y & F Package Only)
PI-3940-040606
Figure 2. Functional Block Diagram.
Pin Functional Description
Y Package (TO-220-7C)
Tab Internally Connected to SOURCE Pin 7D 5 NC 4S 3 EN/UV 2 GND 1 BP
DRAIN (D) Pin: The power MOSFET drain connection provides internal operatingcurrentforbothstartupandsteady-stateoperation. BYPASS (BP) Pin: A0.33Fexternalbypasscapacitorfortheinternallygenerated 5.8Vsupplyisconnectedtothispin.Intypicalapplications, thispinmustbeexternallysuppliedviaabiaswinding. ENABLE/UNDER-VOLTAGE (EN/UV) Pin: Thispinhasdualfunctions:enableinputandlineunder-voltage sense.Duringnormaloperation,switchingofthepowerMOSFET iscontrolledbythispin.MOSFETswitchingisdisabledwhena currentgreaterthan240Aisdrawnfromthispin.Thispinmay also sense line under-voltage conditions through either an external resistor connected to the DC line voltage or anAC sensecircuit. SOURCE (S) Pin: ThisistheMOSFETsourceconnectionforhighvoltagereturn andcontrolcircuitcommon.
P Package (DIP-8C)
BP EN/UV 1 2 8 7 6 D 4 5 S S S S
F Package (TO-262-7C)
7D 5 NC 4S 3 EN/UV 2 GND 1 BP
PI-3941-031506
Figure 3. Pin Configuration.
GROUND (GND) Pin (Y or F Package Only): This is the signal ground for the bypass capacitor and optocoupler.
2
Rev. I 10/06
PKS603-607
PeakSwitch Functional Description
PeakSwitchintegratesa700VpowerMOSFETswitchwitha powersupplycontrolleronthesamedie.Unlikeconventional pulsewidthmodulation(PWM)controllers,PeakSwitchusesa simpleON/OFFcontroltoregulatetheoutputvoltage. The controller consists of an oscillator, enable circuit (sense and logic), current-limit state machine, 5.8 V regulator, BYPASS pin under-voltage circuit, over- temperature protection, current limit circuit, and leading edge blanking. PeakSwitch incorporates additional circuitry for adaptive current limit, line under-voltage sense, programmable smart line sense, auto-restart, adaptive switching cycle on-time extension, and frequency jitter. Figure 2 is a functional block diagram of the device's most importantfeatures. Oscillator Thetypicaloscillatorfrequencyisinternallysettoanaverage of277kHz.Twosignalsaregeneratedfromtheoscillator:the maximumdutycycle(DCMAX)signalandtheclocksignalthat indicatesthebeginningofeachcycle. The oscillator incorporates circuitry that introduces a small amountoffrequencyjitter,typically16kHzpeak-to-peak,to minimizeEMIemission.Themodulationrateofthefrequency jitter is set to 1.1 kHz to optimize EMI reduction for both averageandquasi-peakemissions.Thefrequencyjittershould bemeasuredwiththeoscilloscopetriggeredatthefallingedge oftheDRAINwaveform.ThewaveforminFigure4illustrates thefrequencyjitter. Enable Input and Current-Limit State Machine TheenableinputcircuitattheEN/UVpinconsistsofalow impedance source follower output set at 1.0 V. The current
PI-3942-022806
throughthesourcefollowerislimitedto240A.Whenthe current out of this pin exceeds 240A, a low logic level (disable)isgeneratedattheoutputoftheenablecircuit.This enable circuit output is sampled at the beginning of each cycleontherisingedgeoftheclocksignal.Ifhigh,thepower MOSFETisturnedonforthatcycle(enabled).Iflow,thepower MOSFETremainsoff(disabled).Sincethesamplingisdone onlyatthebeginningofeachcycle,subsequentchangesinthe EN/UV pin voltage or current during the remainder of the cycleareignored. The current-limit state machine reduces the current limit by discrete amounts at light loads when PeakSwitch is likely to switchintheaudiblefrequencyrange.Thelowercurrentlimit raisestheeffectiveswitchingfrequencyabovetheaudiorange andreducesthetransformerfluxdensity,includingtheassociated audible noise. The state machine monitors the sequence of EN/UVpinvoltagelevelstodeterminetheloadconditionand adjuststhecurrentlimitlevelaccordinglyindiscreteamounts. Undermostoperatingconditions(exceptwhenclosetono-load), thelowimpedanceofthesourcefollowerkeepsthevoltageon theEN/UVpinfromgoingmuchbelow1.0Vinthedisabled state.Thisimprovestheresponsetimeoftheoptocouplerthat isusuallyconnectedtothispin. 5.8 V Regulator and 6.3 V Shunt Voltage Clamp The5.8Vregulatorchargesthebypasscapacitorconnectedto theBYPASSpinto5.8Vbydrawingacurrentfromthevoltage ontheDRAINpinwhenevertheMOSFETisoff.TheBYPASS pinistheinternalsupplyvoltagenode.WhentheMOSFET ison,thePeakSwitch operatesfromtheenergystoredinthe bypasscapacitor.ThevoltageontheDRAINpinpowersthe bypassduringstart-up. Thereisa6.3VshuntregulatorclampingtheBYPASSpinat 6.3V when current is provided through an external resistor from the bias winding in normal operation. Powering the PeakSwitchdeviceinthiswayminimizesno-loadconsumption toabout150mWat265VAC.Notethatabiaswindingmustbe usedtopowerthedevice.SeeKeyApplicationConsiderations sectionfordetails. BYPASS Pin Under-Voltage TheBYPASSpinunder-voltagecircuitrydisablesthepower MOSFETwhentheBYPASSpinvoltagedropsbelow4.8V. OncetheBYPASSpinvoltagedropsbelow4.8V,itmustrise backto5.8Vtoenable(turnon)thepowerMOSFET.
600 500 VDRAIN 400 300 200 100 0 285 kHz 269 kHz
0
2.5 Time (s)
5
Figure 4. Frequency Jitter.
Over Temperature Protection The thermal shutdown circuitry senses the die temperature. Thethresholdistypicallysetat142Cwith75Chysteresis. When the die temperature rises above this threshold, the powerMOSFETisdisabledandremainsdisableduntilthedie temperaturefallsby75C,atwhichpointitisre-enabled.Alarge
3
Rev. I 10/06
PKS603-607
hysteresisof75C(typical)isprovidedtopreventoverheating ofthePCboardduringacontinuousfaultcondition. Current Limit ThecurrentlimitcircuitsensesthecurrentinthepowerMOSFET. Whenthiscurrentexceedstheinternalthreshold(ILIMIT),the powerMOSFETisturnedofffortheremainderofthatcycle.The currentlimitstatemachinereducesthecurrentlimitthreshold bydiscreteamountsundermediumandlightloads. The leading edge blanking circuit inhibits the current limit comparatorforashorttime(tLEB)afterthepowerMOSFETis turnedon.Thisleadingedgeblankingtimehasbeensetsothat currentspikescausedbycapacitanceandsecondary-siderectifier reverserecoverytimewillnotcauseprematureterminationof theMOSFETconductionportionoftheswitchingcycle. During startup and fault conditions, the controller prevents excessive drain currents by reducing the switching frequency. Adaptive Current Limit Whenswitchinginthefullcurrentlimitstate,askippedcycle followed by a cycle that terminates at the full current limit impliesthatthelinevoltageisathighline.Underthiscondition, adaptive current limit reduces the full current limit level by approximately10%inordertoreduceoutputoverloadpower. The next skipped cycle disables the adaptive current limit conditionandrestoresthefullcurrentlimitlevel. Line Under-Voltage Sense Circuit The line under-voltage circuit prevents startup below the programmedinputvoltagebyconnectinganexternalresistor from either the DC line or from an AC sense circuit (see Figure1)totheEN/UVpin.Thecompletefunctionisdescribed intheflowchartshowninFigure5.Duringpoweruporwhen theswitchingofthepowerMOSFETisdisabledinauto-restart, thecurrentflowingintotheEN/UVpinmustexceed25Ato initiateswitchingofthepowerMOSFET.Duringpowerup, oncethethresholdisexceeded,theBypasspinmustchargefrom 4.8Vto5.8VbeforeMOSFETswitchingisinitiated. The line under-voltage circuit also detects when there is no externalresistorconnectedtotheEN/UVpin(lessthan~1A intopin).Inthiscase,thelineunder-voltagefunctionisdisabled andthedeviceoperateswithanormalauto-restartfunction. Programmable Smart AC Line Sense WhenanexternalACsensecircuitisused(seeFigure1),theline under-voltagesensecircuitcanbeusedtodeterminethereason foralossoffeedbacksignalattheEN/UVpin.Intheeventof afaultconditionsuchasoutputoverload,outputshortcircuit, oranopenloopcondition,thepowerMOSFETswitchingis disabledaftertheEN/UVpinisnotpulledlowfor30ms.Ifthe AClineispresent(IEN>25A)atthetimeswitchingisdisabled,
1. Startup
2. UV Resistor Present?
No
9. Start Switching
Yes
No No 3. AC Input Present? (IEN>25 A) 10. No Feedback >30 ms?
Yes Yes 11. Stop Switching (for 5 s)
4. Start Switching
No
5. No Feedback >30 ms?
Yes
6. Stop Switching
Yes
7. AC Input Present? (IEN>25 A)
Note: Normal operation (no fault present) is denoted by looping with a "No" response at decision box 5 or 10.
No
8. Reset A/R Latch
PI-4014-062305
Figure 5. PeakSwitch Line Sense Function Flow Chart.
Rev. I 10/06
PKS603-607
VDRAIN
PI-3943-031506
300 200 100 0 10
peakoutputpowerwasrequiredinlowlineconditions.On-time extensionisdisabledduringthestartupofthepowersupply. PeakSwitch Operation PeakSwitchdevicesoperateinthecurrent-limitmode.When enabled, the oscillator turns the power MOSFET on at the beginningofeachcycle.TheMOSFETisturnedoffwhenthe currentrampsuptothecurrentlimitorwhentheDCMAXlimit isreached.Sincethehighestcurrentlimitlevelandfrequency
VDC-OUTPUT
5 0
V EN CLOCK D
0
5
10
Time (s) Figure 6. PeakSwitch Auto-Restart Operation.
the line under-voltage sense circuit prevents a restart attempt until the AC input voltage is removed (IEN <25A).Thentheinternalauto-restartlatchisresetand thepowerMOSFETswitchingwillresumeoncetheACinput voltageisappliedagain(IEN>25A).Thiseffectivelyprovides alatchingshutdownfunctionwithACresetduringsuchafault condition. Whenabrownoutorlinesagoccurs,outputregulationmaybe lostandtheEN/UVpinwillreceivenofeedback(itispulled low).After30msofnofeedback,MOSFETswitchingisdisabled. SincetheAClineisabnormallylow(IEN<25A)MOSFET switchingremainsdisableduntilnormallinevoltageisrestored. ThepowerMOSFETswitchingwillresumeoncetheACinput returnstonormal(IEN>25A).Thiseffectivelydisablesthe latchingshutdownfunctionduringsuchacondition. Auto-Restart (UV resistor not present) In the event of a fault condition such as output overload, output short circuit or an open loop condition, PeakSwitch enters into auto-restart operation. An internal counter clockedbytheoscillatorisreseteverytimetheEN/UVpin is pulled low. When the EN/UV pin receives no feedback for 30 ms, the power MOSFET switching is disabled for 5 seconds (150 ms for the first auto-restart event). The auto-restart alternately enables and disables the switching ofthepowerMOSFETuntilthefaultconditionisremoved. Figure6illustratesauto-restartcircuitoperationinthepresence ofanoutputshortcircuit. Adaptive Switching Cycle On-time Extension Adaptiveswitchingcycleon-timeextensionkeepstheMOSFET onuntilcurrentlimitisreached,insteadofterminatingafter theDCMAXsignalgoeslow.Thison-timeextensionisadaptive becauseitonlyoccursaftertheENABLEpinhasbeenhigh forapproximately750s,aconditionthatwouldariseifthe
MAX
I DRAIN
V DRAIN
PI-2749-050301
Figure 7. PeakSwitch Operation at Near Maximum Loading.
V EN CLOCK D
MAX
I DRAIN
V DRAIN
PI-2667-090700
Figure 8. PeakSwitch Operation at Moderately Heavy Loading.
5
Rev. I 10/06
PKS603-607
of a PeakSwitch design are constant, the power delivered to the load is proportional to the primary inductance of the transformerandpeakprimarycurrentsquared.Hence,designing thesupplyinvolvescalculatingtheprimaryinductanceofthe transformer for the maximum output power required. If the chosenPeakSwitchfamilymemberisappropriateforthepower level,thecurrentinthecalculatedinductancewillrampupto currentlimitbeforetheDCMAXlimitisreached. Enable Function PeakSwitchsensestheEN/UVpintodeterminewhetherornot toproceedwiththenextswitchingcycleasdescribedearlier. Thesequenceofcyclesisusedtodeterminethecurrentlimit. Onceacycleisstarted,italwayscompletesthecycle(evenwhen theEN/UVpinchangesstatehalfwaythroughthecycle).This operationresultsinapowersupplyinwhichtheoutputvoltage rippleisdeterminedbytheoutputcapacitor,amountofenergy perswitchcycleandthedelayofthefeedback. The EN/UV pin signal is produced on the secondary by comparingthepowersupplyoutputvoltagewithareference voltage.TheEN/UVpinsignalishighwhenthepowersupply outputvoltageislessthanthereferencevoltage. Inatypicalimplementation,theEN/UVpinisdrivenbyan optocoupler. The collector of the optocoupler transistor is connectedtotheEN/UVpinandtheemitterisconnectedto theSOURCEpin.TheoptocouplerLEDisconnectedinseries withaZenerdiodeacrosstheDCoutputvoltagetoberegulated. Whentheoutputvoltageexceedsthetargetregulationvoltage level(optocouplerLEDvoltagedropplusZenervoltage),the optocouplerLEDwillstarttoconduct,pullingtheEN/UVpin low.TheZenerdiodecanbereplacedbyaTL431reference circuitforimprovedaccuracy. ON/OFF Operation with Current-Limit State Machine TheinternalclockofthePeakSwitchrunsallthetime.Atthe beginningofeachclockcycle,itsamplestheEN/UVpinto decidewhetherornottoimplementaswitchcycle,andbased onthesequenceofsamplesovermultiplecycles,itdetermines theappropriatecurrentlimit.Athighloads,whentheEN/UV pinishigh(lessthan240Aoutofthepin),aswitchingcycle withthefullcurrentlimitoccurs.Atlighterloads,whenEN/UV ishigh,aswitchingcyclewithareducedcurrentlimitoccurs.
V EN CLOCK D
MAX
I DRAIN
V DRAIN
PI-2661-072400
V EN CLOCK D
Figure 10. PeakSwitch Operation at Very Light Loading.
PI-4331-031506
200 100 0 5
I DRAIN
V DC-INPUT
MAX
0 300 200 100
V
BYPASS
V
DRAIN
V DRAIN
0 0
PI-2377-091100
5
10
Time (ms) Figure 9. PeakSwitch Operation at Medium Loading. Figure 11. PeakSwitch Power Up with Optional External UV Resistor (4 MW) Connected to EN/UV Pin.
6
Rev. I 10/06
PKS603-607
PI-4332-031506
PI-2395-030801
200 100 0 5 0 300 200 100 0 0
V DRAIN V BYPASS V DC-INPUT
200 100 0 400 300 200 100 0
V DRAIN V DC-INPUT
Modifyingcurrentschematic
5
10
0
2.5
5
Time (ms) Figure 12. PeakSwitch Power Up Without Optional External UV Resistor Connected to EN/UV Pin.
Time (s)
Figure 14. Slow Power Down Timing With Optional External (4 MW) UV Resistor Connected to EN/UV Pin.
200 100 0 400 300 200 100 0 0 .5
V DRAIN V DC-INPUT
Power Up/Down The PeakSwitch requires only a 0.33 F capacitor on the BYPASSpin.Becauseofitssmallsize,thetimetochargethis capacitoriskepttoanabsoluteminimum,typicallylessthan 1.5ms.DuetothefastnatureoftheON/OFFfeedback,there isnoovershootatthepowersupplyoutput.Whenanexternal resistorisconnectedfromthepositiveDCinputtotheEN/UV pin,thepowerMOSFETswitchingwillbedelayedduringpower upuntiltheDClinevoltageexceedsthethreshold(100V). Figures 11 and 12 show the power up timing waveform in applications with and without an external resistor (4 MW) connectedtotheEN/UVpin. During power down, when an external resistor is used, the powerMOSFETwillswitchfor30msaftertheoutputloses regulation.ThepowerMOSFETwillthenremainoffwithout anyglitchessincetheunder-voltagefunctionprohibitsrestart whenthelinevoltageislow. Figure13illustratesatypicalpower-downtimingwaveform. Figure14illustratesaveryslowpower-downtimingwaveform asinstandbyapplications.Anexternalresistorisconnectedto theEN/UVpininthiscasetopreventunwantedrestarts. Current Limit Operation EachswitchingcycleisterminatedwhentheDRAIN current reaches the current limit of the PeakSwitch. Current limit operationprovidesgoodlineripplerejection. BYPASS Pin Capacitor TheBYPASSpinusesasmall0.33uFceramiccapacitorfor decouplingtheinternalpowersupply.
1
Time (s) Figure 13. Normal Power Down Timing (Without UV).
Atmaximumpeakload,PeakSwitchwillconductduringnearly allofitsclockcycles(Figure7).Attheratedcontinuousload, it will "skip" additional cycles in order to maintain voltage regulationatthepowersupplyoutput(Figure8).Atmedium loads, cycles will be skipped and the current limit will be reduced(Figure9).Atverylightloads,thecurrentlimitwill bereducedevenfurther(Figure10).Onlyasmallpercentage ofcycleswilloccurtosatisfytheinternalpowerconsumption ofthepowersupplyatno-load. The response time of the ON/OFF control scheme is very fast compared to normal PWM control. This provides tightregulationandexcellenttransientresponse.
PI-2348-030801
7
Rev. I 10/06
PKS603-607
C10 1 nF 250 VAC R8 68 C11 1/2 W 330 pF D9 1N4148 C17 4.7 nF 1 kV D1-D4 1N4007 C4 150 F 400 V R15 2.2 R4 22 1/2 W D6 FR106 D5 1N4007 t RT1 10
O
R9 C13 47 F 0.33 2W 16 V Q1 2N3906
30 V @ C14 L2 220 nF 1.07 A Cont. 2.7 A Peak 5.3 H 50 V
C5 2.2 nF 1 kV
VR1 1N4764A 100 V 1
9,10
D8 STPS3150
C12 330 F 50 V
7,8 R3 10 k 1/2 W 3 4 C6 47 F 35 V 5
T1 EE25
VR2 1N5255B 28 V
R11 3 k
R10 1.5 k
RTN
L1 5.3 mH R2 R1 1.3 M 1.3 M C3 680 nF X1 R5 2.2 M PeakSwitch D U1 PKS606Y C7 100 nF 400 V
S
2
R12 1 k R7 4.7 k
C15 100 nF 50 V
D10 UF4003
VR3 1N5258B 36 V
Q2 FS202DA
R6 2.4 M
D7 1N4148 C16 100 nF R14 100 R13 1 k
R16 2.7 M
EN/UV BP GND
F1 3.15 A J1
L PE N
C1-C2 100 pF 250 VAC
C8 220 nF 50 V
U2 PC817X4
RTN Connected to PE via Flying Lead
C19 1 nF, 250 VAC
J3 PCB Term 18 AWG
PI-4170-060706
Figure 15. PeakSwitch PKS606Y, 32 W Continuous, 81 W Peak, Universal Input Power Supply.
Application Example
ThecircuitshowninFigure15isalowcost,highefficiency, flyback power supply designed to provide a 30 V, 1.06 A continuous,2.7Apeakoutputfromuniversalinputusingthe PKS606Y. Thesupplyfeaturesunder-voltagelockoutandsmart Csensewith A fastreset.Latchingoverload,openloop,andhystereticthermal shutdownprotectboththesupplyandloadunderfaultconditions whilehighefficiency(>80%)andverylowno-loadconsumption (<200mWat230VAC)meetsbothactiveandstandbyefficiency requirements.Outputregulationisaccomplishedusingasimple Zenerreferenceandoptocouplerfeedback. ComponentsC1,C2,C3,C10,C17,C19,R15,L1andL2provide commonmodeanddifferentialmodeEMIfiltering.Resistors R1andR2dischargeC3whenACpowerisremovedtoprevent electricshockfromtouchingtheACinput.ThermistorRT1 limitsthepeakinrushcurrentwhenACisfirstapplied. Therectifiedandfilteredinputvoltageisappliedtotheprimary windingofT1.Theothersideofthetransformerprimaryis drivenbytheintegratedMOSFETinU1.DiodeD6,C5,R3, R4,andVR1clamptheU1drainvoltagetosafelevels.Use of a fast diode (500 ns) vs ultrafast for D6 increases power supplyefficiencybyrecoveringsomeoftheclampenergy.A sloworstandardrecoverydiodemustnotbeusedduetothe
highswitchingfrequency(aslowdiodewillnotrecoverfast enough under startup or output faults and therefore fail due toexcessdissipation).TheuseofaZenerinserieswithR3 comparedtoastandardRCDclampoptimizesbothEMIand energyefficiency. Components D5, C7, and R5-6 provideAC line and undervoltagesensingforPeakSwitchU1.Byprovidingaseparate rectifiedvoltageacrossC7whichisindependentfromtheload condition,ratherthanusingthemaininputcapacitor,allows PeakSwitch to distinguish the cause of loss of regulation. It alsoprovidesfastresetwhentheACinputisremoved,should latchingshutdownbetriggered.ConnectingR5andR6toC4 wouldstillprovideunder-voltagelockoutbutafterafaultthe userwouldhavetowaitforC4todischargebeforethesupply wouldreset.ResistorR16providesasmallamountofbiasto theU1ENABLE/UNDER-VOLTAGEpintoretaintheundervoltagelockoutfunctionduringbrown-outconditions. WithR5andR6present,switchingisinhibiteduntilthecurrent intotheEN/UVpinexceeds25A.Thisallowsthestartup voltagetobeprogrammedwithinthenormaloperatinginput voltagerange,preventingglitchingoftheoutputunderabnormal, lowvoltageconditionsandalsoonremovaloftheACinput. Underafaultcondition,forexampleanoutputshortcircuitor brokenfeedbackloop,ifthelinevoltageiswithinthenormal range(>25AintotheEN/UVpin)thePeakSwitchwilllatch
8
Rev. I 10/06
PKS603-607
offthepowersupply.Thisprotectstheloadandsupplyfrom acontinuousfaultcondition.RemovingtheACinputresets thiscondition. TheoutputvoltageisdeterminedbytheZenerdiodeVR2,the voltagedropacrossR12andtheforwarddropofD9andtheLED ofoptocouplerU2.ResistorR13providesbiascurrentthrough D9andVR2,toensurethatVR2isoperatingclosetoitsknee voltage,whileR12setstheoverallgainofthefeedbackloop. CapacitorC15boostshighfrequencyloopgaintohelpdistribute theenabledswitchingcyclesandreducepulsegrouping. Whentheoutputvoltageexceedsthefeedbackthresholdvoltage, currentwillflowintheoptocouplerLED,causingcurrentflowin thetransistoroftheoptocoupler.WhenthisexceedstheENABLE pinthresholdcurrentthenextswitchingcycleisinhibited,asthe outputvoltagefalls(belowthefeedbackthreshold)aconduction cycleisallowedtooccurandbyadjustingthenumberofenabled cyclesoutputregulationismaintained.Astheloadreduces thenumberofenabledcyclesdecreases,loweringtheeffective switchingfrequencyandscalingswitchinglosseswithload. This provides almost constant efficiency down to very light loads,idealformeetingenergyefficiencyrequirements. PeakSwitchdeviceU1issuppliedfromanauxillarywinding onthetransformerwhichisrectifiedandfilteredbyD7andC6. ResistorR7providesapproximately2mAofsupplycurrentinto theBYPASSpincapacitorC8.Duringstartuporfaultconditions whenthebiasvoltageislow,theBYPASSpinissuppliedfrom ahighvoltagecurrentsourcewithinU1,eliminatingtheneed forseparatestartupcomponents. Components Q1-2, R9-11, R14, C13, C16, and VR3 form anovervoltageandovercurrentprotectioncircuit.Anoutput overvoltageorovercurrentconditionfiresSCRQ2,clamping the output voltage and forcing PeakSwitch U1 into latching shutdownafter30ms.ThelowpassfilterformedbyR10and C13 adds a delay to the over-current sense. The shutdown conditioncanberesetbybrieflyremovingACpowerfor~3 seconds(maximum).ThelatchingfunctionwithinPeakSwitch significantlyreducesthesizeoftheSCRandoutputrectifier, D8,astheshortcircuitcurrentonlyflowsfor50msbeforethe supplylatchesoff. This design meets EN55022 Class B conducted EMI with >10dBmarginevenwiththeoutputRTNdirectlyconnected toearthground. themaximumpracticalcontinuousoutputpowerlevelthatcan beobtainedunderthefollowingassumedconditions: 1. The minimum DC input voltage is 100 V or higher for 85VACinput,or220Vorhigherfor230VACinputor single100/115VACwithavoltagedoubler. 2. Efficiency of 70% forY/F packaged devices, 75% for P packageddevicesat85-265VAC,75%for230VACinput allpackages 3. MinimumdatasheetvalueofI2f 4. Transformerprimaryinductancetoleranceof10% 5. Reflectedoutputvoltage(VOR)of135V 6. Voltageonlyoutputof15VwithanultrafastPNrectifier diode 7. ContinuousconductionmodeoperationwithtransientKP* valueof0.25 8. Sufficientheatsinkingisprovided,eitherexternally(Y/F packages)orthroughanareaofPCboardcopper(Ppackage) tokeeptheSOURCEpinortabtemperatureatorbelow 110C. 9. Deviceambienttemperatureof50Cforopenframedesigns and40Cforsealedadapters
*Below a value of 1, KP is the ratio of ripple to peak primary current.Topreventreducedpowercapabilityduetopremature terminationofswitchingcycles,atransientKPlimitof0.25is recommended.Thisavoidstheinitialcurrentlimit(IINIT)being exceededatMOSFETturnon.
Peak vs. Continuous Power PeakSwitch devices have current limit values that allow the specifiedpeakpowervaluesinthepowertable.Withsufficient heatsinking,thesepowerlevelscouldbeprovidedcontinuously, however this may not be practical in many applications. PeakSwitchisoptimizedforuseinapplicationsthathaveshort duration,highpeakpowerdemand,butasignificantlylower continuousoraveragepower.TypicalratioswouldbePPEAK 2xPAVE.ThehighswitchingfrequencyofPeakSwitchallows a small core size to be selected to deliver the peak power, buttheshortdurationpreventsthetransformerwindingfrom overheating.Asaveragepowerincreases,itmaybenecessaryto selectalargertransformertoallowincreasedcopperareaforthe windingsbasedonthemeasuredtransformertemperature. The power table provides some guidance between peak power and continuous power in sealed adapters, however specific applications may differ. For example, if the peak powerconditionisverylowdutycycle,saya2secondpeak occurring only at power up to accelerate a hard disk drive, then the transformer's thermal rise is only a function of the continuouspower.However,ifthepeakpoweroccursevery 200msfor50msthenitwouldneedtobeconsidered. Inallcases,theacceptabletemperatureriseofthePeakSwitch andtransformershouldbeverifiedunderworstcaseambient andloadconditions.
Key Application Considerations
PeakSwitch Design Considerations Output Power Table Thedatasheetmaximumoutputpowertable(Table1)represents
Rev. I 10/06
PKS603-607
Power (W) P3
provides sufficient margin to prevent core saturation under startuporoutputshortcircuitconditions. Optocoupler CTR To minimize the delay introduced by the optocoupler, it is recommendedthatahigh(300-600%)CTRoptocouplerisused inPeakSwitchdesigns.
PI-4329-030906
P2
P1
t1 T
t2
Time (t)
Bias Winding AllPeakSwitchdesignsmustuseabiaswindingtofeedoperating currentintotheBYPASSpinoncethesupplyisoperational. Itisrecommendedthatthevalueoftheresistorfromthebias windingtotheBYPASSpinbeselectedsuchthatitsuppliesthe samecurrentasthemaximumdatasheetdrainsupplycurrent (IS2)forthespecificdevicebeingused. PeakSwitch Layout Considerations See Figure 17 for a recommended circuit board layout for PeakSwitch. Single Point Grounding DevicesinYandFpackageshaveseparatereturnpinsforthe MOSFET source (S) and the controller (GND) connections which are internally connected. Therefore connecting these pinsonthePCboardisnotrecommended. Devices in the P package do not have separate return pins, but in both cases the low current feedback signals and IC decoupling,highMOSFETcurrentandbiaswindingprimary returnconnectionshouldroutethroughseparatetracestothe Kelvinconnection. Thebiaswindingreturnconnectionistreatedseparately,even thoughitcarrieslowcurrent.Toroutehighcurrentsawayfrom thedevicewhenthesupplyissubjectedtolinesurgetransients, thebiaswindingshouldbereturneddirectlytotheinputbulk capacitor. Bypass Capacitor (CBP) TheBYPASSpincapacitorshouldbelocatedascloseaspossible totheBYPASSandSOURCEpins. Primary Loop Area The area of the primary loop that connects the input filter capacitor,transformerprimaryandPeakSwitchtogethershould bekeptassmallaspossible. Primary Clamp Circuit AclampisusedtolimitthepeakvoltageontheDRAINpin atturnoff.ThiscanbeachievedbyusinganRCDclampora Zener(~200V)anddiodeclampacrosstheprimarywinding. InallcasestominimizeEMIcareshouldbetakentominimize thecircuitpathfromtheclampcomponentstothetransformer andPeakSwitch.
Figure 16. Continuous (Average) Output Power Calculation Example.
Figure 16 shows how to calculate the average power requirementsforadesignwithtwodifferentpeakloadconditions.
WherePXarethedifferentoutputpowerconditions,tXarethe durationsofeachpeakpowercondition,andTistheperiodof onecycleofthepulseloadcondtion. Audible Noise The cycle skipping mode of operation used in PeakSwitch cangenerateaudiofrequencycomponentsinthetransformer. Tolimitthisaudiblenoisegeneration,thetransformershould be designed such that the peak core flux density is below 3000Gauss(300mT).Followingthisguidelineandusingthe standardtransformerproductiontechniqueofdipvarnishing practically eliminates audible noise. Vacuum impregnation ofthetransformershouldnotbeusedduetothehighprimary capacitanceandincreasedlossesthatresult. CeramiccapacitorsthatusedielectricssuchasZ5U,whenused inclampcircuits,mayalsogenerateaudionoise.Ifthisisthe casetryreplacingthemwithacapacitorhavingadifferenttypeof dielectricorconstruction,forexampleafilmtypecapacitor. Maximum Flux Density Amaximumvalueof3000Gaussduringnormaloperationis recommendedtolimitthemaximumfluxdensityunderstart upandoutputshortcircuit.Undertheseconditionstheoutput voltageislowandlittleresetofthetransformeroccursduring theMOSFETofftime.Thisallowsthetransformerfluxdensity to staircase above the normal operating level. A value of 3000Gaussatthepeakcurrentlimitoftheselecteddevice, together with the built in protection features of PeakSwitch
10
Rev. I 10/06
PKS603-607
Safety Spacing
Y1Capacitor
Maximize hatched copper areas ( ) for optimum heatsinking Output Rectifier Output Filter Capacitor
+
HV
Input Filter Capacitor PRI BIAS D PRI T r a n s f o r m e r SEC
-
S S
PeakSwitch
EN/UV BP
S
BIAS
TOP VIEW
S CBP
Optocoupler
-
(a)
Safety Spacing + Input Filter Capacitor
Y1Capacitor
DC + OUT
PI-4326-060706
Maximize hatched copper areas ( ) for optimum heatsinking
HV
Output Rectifier PRI T r a n s f o r m e r
Output Filter Capacitor
-
SEC
NC EN/UV GND
D
PRI BIAS BIAS BP
TOP VIEW
CBP
Heat Sink
Optocoupler
(b)
Figure 17. Recommended Layout for PeakSwitch in (a) P and (b) Y/F Packages.
-
DC + OUT
PI-4327-031706
11
Rev. I 10/06
PKS603-607
Thermal Considerations For the P package, the four SOURCE pins are internally connectedtotheICleadframeandprovidethemainpathto removeheatfromthedevice.Therefore,alltheSOURCEpins shouldbeconnectedtoacopperareaunderneaththePeakSwitch toactnotonlyasasinglepointground,butalsoasaheatsink. Asthisareaisconnectedtothequietsourcenode,itshouldbe maximizedforgoodheatsinking.Similarly,foraxialoutput diodes,maximizethePCBareaconnectedtothecathode. Y-Capacitor TheplacementoftheY-typecapshouldbedirectlyfromthe primaryinputfiltercapacitorpositiveterminaltothecommon/ return terminal of the transformer secondary. If a second Y-typecapisrequiredfromprimarytosecondaryreturn,connect theprimarysidedirectlytothenegativeterminaloftheinput capacitor.Suchaplacementwillroutehighmagnitudecommon modesurgecurrentsawayfromthePeakSwitchdevice.Note -ifaninput(C,L,C)EMIfilterisused,thentheinductorin thefiltershouldbeplacedbetweenthenegativeterminalson theinputfiltercapacitors. Optocoupler Place the optocoupler physically close to the PeakSwitch to minimizetheprimarysidetracelengths.Keepthehighcurrent highvoltagedrainandclamptracesawayfromtheoptocoupler topreventnoisepickup. Output Diode For best performance, the area of the loop connecting the secondary winding, the output diode and the output filter capacitorshouldbeminimized.Inaddition,sufficientcopper area should be provided at the anode and cathode terminal ofthediodeforheatsinking.Alargerareaispreferredatthe quitecathodeterminal.Alargeanodeareacanincreasehigh frequencyradiatedEMI. Quick Design Checklist As with any power supply design, all PeakSwitch designs shouldbeverifiedonthebenchtomakesurethatcomponent specificationsarenotexceededunderworstcaseconditions.The followingminimumsetoftestsisstronglyrecommended: 1. Maximumdrainvoltage-VerifythattheVDSdoesnotexceed 650Vathighestinputvoltageandpeak(overload)output power.The50Vmargintothe700VBVDSSspecification allowsmarginfordesignvariation. 2. Maximumdraincurrents-Verifythesimultaneousdrain voltageandcurrentlevelsarewithinthecurveprovidedin Figure29underworstcaseconditions.Typicallythisoccurs atstartup(andduringanoutputshortcircuit),highestinput line voltage and maximum ambient temperature. When makingthismeasurementusingacurrentprobe,tomonitor thedraincurrent,ensuretheresultsarecorrectedforthe 10-20nscurrentprobedelay. 3. Maximumdraincurrent-Atmaximumambienttemperature, maximuminputvoltageandpeakoutput(overload)power, verifydraincurrentwaveformsshownosignsoftransformer saturation. If the transformer shows signs of saturation, it should be redesigned with a lower flux density, or a higher quality corematerial should beused. To prevent false triggering of the current limit, verify the leading edgecurrentspikeeventisbelowIINIT(MIN)attheendofthe tLEB(MIN).Underallconditions,themaximumdraincurrent shouldbebelowtheabsolutemaximumlimitspecifiedin theAbsoluteMaximumRatingssection. 4. Thermal Check - At specified maximum output power, minimuminputvoltageandmaximumambienttemperature, verifythatthetemperaturespecificationsarenotexceededfor PeakSwitch,transformer,outputdiodeandoutputcapacitors. Enoughthermalmarginshouldbeallowedforpart-to-part variationoftheRDS(ON)ofPeakSwitchasspecifiedinthe datasheet.Underlowline,maximumpower,amaximum PeakSwitchSOURCEpinortabtemperatureof110Cis recommendedtoallowforthesevariations. Design Tools Up-to-date information on design tools can be found at the PowerIntegrationswebsite:www.powerint.com.
12
Rev. I 10/06
PKS603-607 ABSOLUTE MAXIMUM RATINGS(1,)
DRAINVoltage...............................................-0.3Vto700V . DRAINPeakCurrent:............................. 2xILIMIT(Typical)(5) EN/UVVoltage....................................................-0.3Vto9V EN/UVCurrent........................................................... 100mA BYPASSVoltage.................................................. 0.3Vto9V StorageTemperature......................................-65Cto150C OperatingJunctionTemperature(2).................-40Cto150C LeadTemperature(3)....................................................... 260C
Notes: 1. AllvoltagesreferencedtoSOURCE,TA=25C. 2. Normallylimitedbyinternalcircuitry. 3. 1/16in.fromcasefor5seconds. 4.Maximumratingsspecifiedmaybeappliedoneatatime, withoutcausingpermanentdamagetotheproduct. ExposuretoAbsoluteMaximumRatingconditionsfor extendedperiodsoftimemayaffectproductreliability. 5. PeakDRAINcurrentisallowedwhiletheDRAINvoltage issimultaneouslylessthan400V.SeealsoFigure29.
ThermalImpedance:Y/FPackage: (qJA)(1)........................................80C/W (qJC)(2)..........................................2C/W PPackage: (qJA).....................70C/W(3);60C/W(4) (qJC)(5).....................................10C/W(5)
THERMAL IMPEDANCE
Notes: 1. Freestandingwithnoheatsink. 2. Measuredatthebacksurfaceoftab. 3. Solderedto0.36sq.in.(232mm2),2oz.(610g/m2)copperclad. 4. Solderedto1sq.in.(645mm2),2oz.(610g/m2)copperclad. 5. MeasuredontheSOURCEpinclosetoplasticinterface.
Parameter
Symbol
SOURCE = 0 V; TJ = -40 to 125 C See Figure 18 (Unless Otherwise Specified) TJ = 25 C See Figure 4 Average Peak-Peak Jitter S1 Open
Conditions
Min
Typ
Max
Units
CONTROL FUNCTIONS Output Frequency Maximum Duty Cycle EN/UV Pin Turn Off Threshold Current EN/UV Pin Voltage
fOSC DCMAX IDIS IEN/UV = -125 A IEN/UV = 25 A VEN/UV = 0 V EN/UV Open (MOSFET Switching) See Note A, B VBP = 0 V, TJ = 25 C See Note C VBP = 4 V, TJ = 25 C See Note C PKS603 PKS604 PKS605 PKS606 PKS607 PKS603-604 PKS605-607 PKS603-604 PKS605-607 250 62 277 16 65 68 304 kHz %
-350 0.4 1.3 350 460 600 700 950 1160 -7.5 -10.0 -4.5 -6.5
-240 1.0 2.0 475 570 725 875 1175 1430 -5.0 -6.6 -3.0 -4.5
-200 1.5 2.7 600 690 870 1050 1400 1700 -2.5 -3.2 -1.5 -2.5
A
VEN IS1
V
DRAIN Supply Current
IS2
A
BYPASS Pin Charge Current
ICH1 ICH2
mA
13
Rev. I 10/06
PKS603-607 Conditions
Parameter
Symbol
SOURCE = 0 V; TJ = -40 to 125 C See Figure 18 (Unless Otherwise Specified)
Min
Typ
Max
Units
CONTROL FUNCTIONS (cont.) BYPASS Pin Shunt V BP(SH) Regulator Voltage BYPASS Pin VBP Voltage BYPASS Pin VBPH Voltage Hysteresis EN/UV Pin Line ILUV Under-Voltage Threshold CIRCUIT PROTECTION
See Note D
6.0 5.5 0.8
6.3 5.8 1.0 25
6.7 6.15 1.3 27.5
V V V A
TJ = 25 C
22.5
PKS603 P TJ = 25 C PKS604 P/Y/F TJ = 25 C PKS605 P TJ = 25 C
di/dt = 200 mA/s See Note E di/dt = 290 mA/s See Note E di/dt = 290 mA/s See Note E di/dt = 325 mA/s See Note E di/dt = 255 mA/s See Note E di/dt = 660 mA/s See Note E di/dt = 800 mA/s di/dt = 200 mA/s di/dt = 290 mA/s di/dt = 290 mA/s di/dt = 325 mA/s di/dt = 255 mA/s di/dt = 660 mA/s di/dt = 800 mA/s
0.75 1.35 1.35 1.76 1.40 2.60 2.79 164 524 524 890 569 1955 2242
0.81 1.45 1.45 1.89 1.51 2.80 3.00 182 582 582 989 632 2172 2493
0.87 1.55 1.55 2.02 1.62 3.00 3.21 204 652 652 1108 708 2433 2793 A2kHz A
Current Limit
ILIMIT
PKS605 Y/F TJ = 25 C PKS606 P TJ = 25 C PKS606 Y/F TJ = 25 C PKS607 Y/F TJ = 25 C PKS603 P TJ = 25 C PKS604 P/Y/F TJ = 25 C PKS605 P TJ = 25 C
Power Coefficient
I2f
PKS605 Y/F TJ = 25 C PKS606 P TJ = 25 C PKS606 Y/F TJ = 25 C PKS607 Y/F TJ = 25 C
1
Rev. I 10/06
PKS603-607 Conditions
Parameter
Symbol
SOURCE = 0 V; TJ = -40 to 125 C See Figure 18 (Unless Otherwise Specified) See Figure 21 See Note F TJ = 25 C See Note F TJ = 25 C See Notes F, G
Min
Typ
Max
Units
CIRCUIT PROTECTION (cont.) Initial Current Limit Leading Edge Blanking Time Current Limit Delay Thermal Shutdown Temperature Thermal Shutdown Hysteresis OUTPUT
PKS603 ID = 81 mA PKS604 ID = 150 mA TJ = 25 C TJ = 100 C TJ = 25 C TJ = 100 C TJ = 25 C TJ = 100 C TJ = 25 C TJ = 100 C TJ = 25 C TJ = 100 C 7.8 11.7 5.2 7.8 3.9 5.8 2.6 3.9 2.0 3.0 9.0 13.5 6.0 9.0 4.5 6.7 3.0 4.5 2.3 3.5 W IINIT tLEB tILD 0.75 x ILIMIT(Min) 170 215 150 135 142 75 150 mA ns ns C C
ON-State Resistance
RDS(ON)
PKS605 ID = 200 mA PKS606 ID = 300 mA PKS607 ID = 300 mA
OFF-State Drain Leakage Current
IDSS1
VBP = 6.2 V VEN/UV = 0 V VDS = 560 V TJ = 125 C See Note H VBP = 6.2 V VEN/UV = 0 V VDS = 375 V TJ = 50 C See Note H 700 50 15
200 A
IDSS2
Breakdown Voltage Drain Supply Voltage Output EN/UV Delay Output Disable Setup Time
BVDSS
VBP = 6.2 V, VEN/UV = 0 V, See Note I, TJ = 25 C
V V 5 0.5 s s
tEN/UV tDST
See Figure 20
15
Rev. I 10/06
PKS603-607 Conditions
Parameter OUTPUT (cont.) Auto-Restart ON Time Auto-Restart OFF Time
Symbol
SOURCE = 0 V; TJ = -40 to 125 C See Figure 18 (Unless Otherwise Specified) TJ = 25 C See Note J See Note K
Min
Typ
Max
Units
tAR tAROFF
30 5
ms s
NOTES: A. Total current consumption is the sum of IS1 and IDSS when EN/UV pin is shorted to ground (MOSFET not switching) and the sum of IS2 and IDSS when EN/UV pin is open (MOSFET switching). B. Since the output MOSFET is switching, it is difficult to isolate the switching current from the supply current at the DRAIN. An alternative is to measure the BYPASS pin current at 6.1 V. C. See Typical Performance Characteristics section for BYPASS pin startup charging waveform. D. BYPASS pin is externally supplied (bias winding). E. For current limit at other di/dt values, refer to Figure 25. F. This parameter is derived from characterization. G. This parameter is derived from the change in current limit measured at 1X and 4X of the di/dt shown in the ILIMIT specification. H. IDSS1 is the worst case OFF state leakage specification at 80% of BVDSS and maximum operating junction temperature. IDSS2 is a typical specification under worst case application conditions (rectified 265 VAC) for no-load consumption calculations. I. Breakdown voltage may be checked against minimum BVDSS specification by ramping the DRAIN pin voltage up to but not exceeding minimum BVDSS. J. Auto-restart on time has the same temperature characteristics as the oscillator (inversely proportional to frequency). Auto-restart on time is extended during startup and certain fault conditions because the controller reduces its oscillator clock frequency to prevent excessive drain currents. If excessive drain currents are still occuring half way through the auto-restart on time, output MOSFET switching is disabled for the remainder of that auto-restart on time episode (if the line is not sensed) or the supply latches off (if the line is sensed and adequate line voltage is present). K. Only applicable if no UV resistor is present at the EN/UV pin. 5 s applies only if the preceding switching autorestart event did not result in EN/UV pin going low. In that event, the first auto-restart off-time is 150 ms.
16
Rev. I 10/06
PKS603-607
470 W 5W 470 W
S S S EN/UV BP D
S2
S1 4 MW 10 V 0.33 F 150 V 50 V
S
NOTE: This test circuit is not applicable for current limit or output characteristic measurements.
PI-4317-030606
Figure 18. PeakSwitch General Test Circuit.
(internal signal) tP
DCMAX
EN/UV VDRAIN
tP = 1 fOSC
PI-2364-012699
tEN/UV
Figure 19. Duty Cycle Measurement.
Figure 20. Output Enable Timing.
tLEB (Blanking Time)
0.8
IINIT(MIN) ILIMIT(MIN) @ 100 C
Figure 21. Current Limit Envelope.
PI-4328-030806
17
Rev. I 10/06
PKS603-607
Typical Performance Characteristics
PI-2213-012301 PI-4294-022806
1.1
1.2 1.0 0.8 0.6 0.4 0.2 0
Breakdown Voltage (Normalized to 25 C)
1.0
0.9 -50 -25 0 25 50 75 100 125 150
Output Frequency (Normalized to 25 C)
-50
-25
0
25
50
75
100 125
Junction Temperature (C) Figure 22. Breakdown vs. Temperature.
PI-4295-020806
Junction Temperature (C) Figure 23. Frequency vs. Temperature.
PI-4297-020806
1.2
1.4
Standard Current Limit (Normalized to 25 C)
1 0.8 0.6 0.4 0.2 0 -50
Normalized Current Limit
1.2 1.0 0.8 0.6 0.4 0.2 0
0
50
100
150
1
2
3
4
Junction Temperature (C) Figure 24. Standard Current Limit vs. Temperature.
PI-4307-091206
Normalized di/dt
Figure 25. Current Limit vs. di/dt.
PI-4308-091206
1.2 1.0
1000
0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 12 14 16 18 20
Scaling Factors: PKS603 1.0 PKS604 1.5 PKS605 2.0 PKS606 3.0 PKS607 4.0 TJ = 25 C TJ = 100 C
Drain Capacitance (pF)
Drain Current (A)
100
Scaling Factors: PKS603 1.0 PKS604 1.5 PKS605 2.0 PKS606 3.0 PKS607 4.0
10
1 0 100 200 300 400 500 600
Drain Voltage (V) Figure 26. Output Characteristic.
Drain Voltage (V)
Figure 27. COSS vs. Drain Voltage.
18
Rev. I 10/06
PKS603-607
Typical Performance Characteristics (cont.)
PI-4296-020806 PI-4330-031606
1.2
2.5
Under-Voltage Theshold (Normalized to 25 C)
1 0.8 0.6 0.4 0.2 0 -50
Drain Current (Normalized to Typical ILIMIT)
2 1.5 1 0.5
0
50
100
150
0 0 100 200 300 400 500 600 700 800
Junction Temperature (C) Figure 28. Under-Voltage Threshold vs. Temperature.
Drain Voltage (V) Figure 29. Maximum Allowable Drain Current vs. Drain Voltage.
1
Rev. I 10/06
PKS603-607 PART ORDERING INFORMATION
PeakSwitch Product Family Series Number Package Identifier P Y F Plastic DIP-8C Plastic TO-220-7C Plastic TO-262-7C Pure Matte Tin (Pb-Free)
Lead Finish
PKS 60 P N
N
TO-220-7C
.390 (9.91) .420 (10.67)
+
.165 (4.19) .185 (4.70)
.146 (3.71) .156 (3.96)
.045 (1.14) .055 (1.40)
.108 (2.74) REF
.234 (5.94) .261 (6.63) .570 (14.48) REF. 7 TYP. .080 (2.03) .120 (3.05) .670 (17.02) REF.
.461 (11.71) .495 (12.57) .860 (21.84) .880 (22.35)
.068 (1.73) MIN
PIN 1
PIN 1 & 7
PIN 2 & 4
.024 (.61) .010 (.25) M .034 (.86) .050 (1.27) BSC .150 (3.81) BSC
.012 (.30) .024 (.61) .190 (4.83) .210 (5.33)
.040 (1.02) .060 (1.52) .040 (1.02) .060 (1.52)
.050 (1.27) .050 (1.27) .050 (1.27) .050 (1.27) .200 (5.08) .100 (2.54)
PIN 1 PIN 7
Notes: 1. Controlling dimensions are inches. Millimeter dimensions are shown in parentheses. 2. Pin numbers start with Pin 1, and continue from left to right when viewed from the front. 3. Dimensions do not include mold flash or other protrusions. Mold flash or protrusions shall not exceed .006 (.15mm) on any side. 4. Minimum metal to metal spacing at the package body for omitted pin locations is .068 in. (1.73 mm). 5. Position of terminals to be measured at a location .25 (6.35) below the package body. 6. All terminals are solder plated.
.180 (4.58)
.150 (3.81)
.150 (3.81)
Y07C
MOUNTING HOLE PATTERN
PI-2644-122004
20
Rev. I 10/06
PKS603-607
DIP-8C
-E-
D S
.004 (.10)
.240 (6.10) .260 (6.60)
Pin 1 -D.367 (9.32) .387 (9.83) .057 (1.45) .068 (1.73) (NOTE 6) .125 (3.18) .145 (3.68) .015 (.38) MINIMUM
Notes: 1. Package dimensions conform to JEDEC specification MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP) package with .300 inch row spacing. 2. Controlling dimensions are inches. Millimeter sizes are shown in parentheses. 3. Dimensions shown do not include mold flash or other protrusions. Mold flash or protrusions shall not exceed .006 (.15) on any side. 4. Pin locations start with Pin 1, and continue counter-clockwise to Pin 8 when viewed from the top. The notch and/or dimple are aids in locating Pin 1. Pin 3 is omitted. 5. Minimum metal to metal spacing at the package body for the omitted lead location is .137 inch (3.48 mm). 6. Lead width measured at package body. 7. Lead spacing measured with the leads constrained to be perpendicular to plane T.
-T-
SEATING PLANE
.120 (3.05) .140 (3.56) .048 (1.22) .053 (1.35) .137 (3.48) MINIMUM
.008 (.20) .015 (.38) .300 (7.62) BSC (NOTE 7) .300 (7.62) .390 (9.91)
.100 (2.54) BSC .014 (.36) .022 (.56)
T E D
P08C
PI-3933-100504
S .010 (.25) M
21
Rev. I 10/06
PKS603-607
TO-262-7C
.390 (9.91) .420 (10.67) .055 (1.40) .066 (1.68) .326 (8.28) .336 (8.53) .795 (20.18) REF. .165 (4.17) .185 (4.70) .045 (1.14) .055 (1.40)
7 TYP. .080 (2.03) .120 (3.05)
.495 (12.56) REF. .595 (15.10) REF.
PIN 1
.068 (1.73) MIN .024 (.61) .010 (.25) M .034 (.86) .050 (1.27) BSC .150 (3.81) BSC
PIN 1 & 7
PIN 2 & 4
.012 (.30) .024 (.61) .190 (4.83) .210 (5.33)
.040 (1.02) .060 (1.52) .040 (1.06) .060 (1.52)
.050 (1.27) .050 (1.27) .050 (1.27) .050 (1.27) .200 (5.08) .100 (2.54)
PIN 1 PIN 7
.180 (4.58)
.150 (3.81)
.150 (3.81)
F07C
MOUNTING HOLE PATTERN
Notes: 1. Controlling dimensions are inches. Millimeter dimensions are shown in parentheses. 2. Pin numbers start with Pin 1, and continue from left to right when viewed from the front. 3. Dimensions do not include mold flash or other protrusions. Mold flash or protrusions shall not exceed .006 (.15mm) on any side. 4. Minimum metal to metal spacing at the package body for omitted pin locations is .068 inch (1.73 mm). 5. Position of terminals to be measured at a location .25 (6.35) below the package body. 6. All terminals are solder plated.
PI-2757-122004
22
Rev. I 10/06
PKS603-607
23
Rev. I 10/06
PKS603-607
Revision Notes G H I F Date 3/06 4/06 6/06 8/06
1)FinalReleaseDataSheet.
ReviseddevicesymbolinFigures1and15tobeconsistentwithotherPIdocumentation(addedsecond groundconnection).RevisedlayoutofFigure17(PI-4326). RevisedgroundinginFigure1tomatchactualimplementation. AddedPKS607.
For the latest updates, visit our website:www.powerint.com
PowerIntegrationsreservestherighttomakechangestoitsproductsatanytimetoimprovereliabilityormanufacturability.PowerIntegrationsdoesnotassume anyliabilityarisingfromtheuseofanydeviceorcircuitdescribedherein.POWERINTEGRATIONSMAKESNOWARRANTYHEREINANDSPECIFICALLY DISCLAIMSALLWARRANTIESINCLUDING,WITHOUTLIMITATION,THEIMPLIEDWARRANTIESOFMERCHANTABILITY,FITNESSFORA PARTICULARPURPOSE,ANDNON-INFRINGEMENTOFTHIRDPARTYRIGHTS. PATENT INFORMATION Theproductsandapplicationsillustratedherein(includingtransformerconstructionandcircuitsexternaltotheproducts)maybecoveredbyoneormoreU.S. andforeignpatents,orpotentiallybypendingU.S.andforeignpatentapplicationsassignedtoPowerIntegrations.AcompletelistofPowerIntegrations'patents maybefoundatwww.powerint.com.PowerIntegrationsgrantsitscustomersalicenseundercertainpatentrightsassetforthathttp://www.powerint.com/ip.htm. LIFE SUPPORT POLICY POWERINTEGRATIONS'PRODUCTSARENOTAUTHORIZEDFORUSEASCRITICALCOMPONENTSINLIFESUPPORTDEVICESORSYSTEMS WITHOUTTHEEXPRESSWRITTENAPPROVALOFTHEPRESIDENTOFPOWERINTEGRATIONS.Asusedherein: 1.ALifesupportdeviceorsystemisonewhich,(i)isintendedforsurgicalimplantintothebody,or(ii)supportsorsustainslife,and(iii)whosefailuretoperform, whenproperlyusedinaccordancewithinstructionsforuse,canbereasonablyexpectedtoresultinsignificantinjuryordeathtotheuser. 2.Acriticalcomponentisanycomponentofalifesupportdeviceorsystemwhosefailuretoperformcanbereasonablyexpectedtocausethefailureofthelife supportdeviceorsystem,ortoaffectitssafetyoreffectiveness.
ThePIlogo,TOPSwitch, TinySwitch,LinkSwitch, DPA-Switch,PeakSwitch,Clampless,EcoSmart,E-Shield, Filterfuse,StackFET,PI ExpertandPI FACTS aretrademarksofPowerIntegrations,Inc.Othertrademarksarepropertyoftheir respectivecompanies.(c)Copyright2006,PowerIntegrations,Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS 5245HellyerAvenue SanJose,CA95138,USA. Main:+1-408-414-9200 CustomerService: Phone:+1-408-414-9665 Fax:+1-408-414-9765 e-mail: usasales@powerint.com CHINA (SHANGHAI) Rm807-808A PacheerCommercialCentre, 555NanjingRd.West Shanghai,P.R.C.200041 Phone:+86-21-6215-5548 Fax:+86-21-6215-2468 e-mail: chinasales@powerint.com CHINA (SHENZHEN) Rm2206-2207,BlockA, ElectronicsScience&TechnologyBldg. 2070ShennanZhongRd. Shenzhen,Guangdong, China,518031 Phone:+86-755-8379-3243 Fax:+86-755-8379-5828 e-mail: chinasales@powerint.com GERMANY Rueckertstrasse3 D-80336,Munich Germany Phone:+49-89-5527-3910 Fax:+49-89-5527-3920 e-mail: eurosales@powerint.com INDIA #1,14thMainRoad Vasanthanagar Bangalore-560052,India Phone:+91-80-4113-8020 Fax:+91-80-4113-8023 e-mail: indiasales@powerint.com ITALY ViaDeAmicis2 20091BressoMI Italy Phone:+39-028-928-6000 Fax: +39-028-928-6009 e-mail: eurosales@powerint.com JAPAN 1stBldgShin-Yokohama 2-12-20Kohoku-ku, Yokohama-shi,Kanagawa ken,Japan222-0033 Phone:+81-45-471-1021 Fax:+81-45-471-3717 e-mail: japansales@powerint.com KOREA RM602,6FL KoreaCityAirTerminalB/D,159-6 Samsung-Dong,Kangnam-Gu, Seoul,135-728,Korea Phone:+82-2-2016-6610 Fax:+82-2-2016-6630 e-mail: koreasales@powerint.com SINGAPORE 51NewtonRoad #15-08/10GoldhillPlaza Singapore,308900 Phone:+65-6358-2160 Fax:+65-6358-2015 e-mail: singaporesales@powerint.com TAIWAN 5F,No.318,NeiHuRd.,Sec.1 NeiHuDist. Taipei114,TaiwanR.O.C. Phone:+886-2-2659-4570 Fax:+886-2-2659-4550 e-mail: taiwansales@powerint.com UNITED KINGDOM 1stFloor,St.James'sHouse EastStreet,Farnham SurreyGU97TJ UnitedKingdom Phone:+44(0)1252-730-140 Fax:+44(0)1252-727-689 e-mail: eurosales@powerint.com APPLICATIONS HOTLINE WorldWide+1-408-414-9660 APPLICATIONS FAX WorldWide+1-408-414-9760
2
Rev. I 10/06


▲Up To Search▲   

 
Price & Availability of PKS603

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X